LUYULA CULLEGE (AUTUNUMUUS), CHENNAI – OUU U34						
FIFTH SEMESTED NOVEMBED 2018						
16UST5MC02/ST 5509 _PEGPESSION ANALVSIS						
Date: 30-10-2018 Dept. No. Max.	: 100 Marks					
Time: 09:00-12:00						
AnswerALLthequestions. [[10 x 2 = 20]					
1. Differentiate between the mathematical & Statistical equations of a Simple Linear						
Regression Model.						
2. Interpret the slope and Intercept of a Simple Linear Regression Model.						
3. Explain the need for Model diagnostics.						
4. Define Mean Predicted Value.						
5. What are the assumptions used in a regression model?						
6. Define MAE & MAPE.						
7. Give an example of a Dummy Variable.						
8. Explain the term "Outlier"						
9. Define Multicollinearity.						
10. Explain the term "Homoscedasticity".						
PART - B						
AnswerAnyFIVEquestions.	[5x8 = 40]					
 Derive the least squares estimators of the parameters of Simple Linear Regression Model. Differentiate between R² & adjusted R² explaining their interpretation. 						
13. Explain the Kolmogorov-Smirnov test for residuals.						
14. Describe the QQ-plot & PP-plot.						
15. Obtain the estimator of error variance σ^2 for the Multiple Linear regression Model.						
16. Describe the Test for significance of Individual Regression Coefficients of a Simple						
Linear regression Model.						

17. Discuss the use of dummy variables in regression analysis.

18. Fitaregressionlinerelating "SystolicBloodPressure" to "Weight" from the following data:

Subject	1	2	3	4	5	6	7
Weight	165	167	180	155	212	175	190
SystolicBP	130	133	150	128	151	146	150

AnswerAnyTWOquestions.

19. (a) Show that the least squares estimators of Simple Linear regression Model are unbiased

(b) Derive the $100(1-\alpha)$ % confidence interval for regression coefficients of a Simple

Linear Regression Model.

20. (a) Describe three methods of Scaling Residuals along with its interpretation.

(b) Discuss the test for overall significance of a Multiple Linear regression Model

- **21.** (a) Explain the diagnostic test for Muticollinearity using Variance Inflation Factor.
 - (b) Explain the Anderson-Darling test for regression model diagnostics.
- **22.** Fit a Multiple Linear Regression model to the data given below & test for its overall significance.

Job Satisfaction measure (Y)	45	35	35	40	55	50	38	55
Supervisor's Score (X ₁)	39	40	40	42	45	43	44	47
Employee Self Confidence score (X ₂)	51	51	55	57	57	61	65	64
